Using Newton’s Law of Universal Acceleration, we can calculate the acceleration of gravity on earth. The mass of the earth is approimately \(5.97 \times 10^{24}\text{ kg}\) and its radius is approximately 6378 km, or \(6.378 \times 10^6 \text{ m}\text{.}\) These values can be plugged directly into the formula to get the acceleration due to gravity on earth.
\begin{align*}
g \amp = \frac{G \cdot M}{r^2} \\
\amp = \frac{(6.672 \times 10^{-11}) \cdot (5.97 \times 10^{24})}{(6.378 \times 10^6)^2} \, \frac{ \frac{\text{N} \text{m}^2}{\text{kg}^2} \cdot \text{kg}}{\text{m}^2}\\
\amp = \frac{(6.672) \cdot (5.97)}{6.378^2} \cdot \frac{10^{-11} \cdot 10^{24}}{(10^6)^2} \,
\frac{\text{kg} \cdot \text{m}}{\text{s}^2} \cdot \frac{1}{\text{kg}}\\
\amp = 0.9792 \times 10^{1} \, \frac{\text{m}}{\text{s}^2}\\
\amp = 9.792 \, \frac{\text{m}}{\text{s}^2}
\end{align*}
This value closely matches the value we used in the previous section.