Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\tikzspacer}{
\draw (-8,0) circle (0.02);
\draw (8,0) circle (0.02);
}
\newcommand{\eqnspacer}{\hspace{25pt}}
\usepackage{cancel}
\usepackage{multirow}
\usepackage{hhline}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Worksheet 2
1.
Determine whether \(p = -3\) is a solution of the equation \(-2p - 4 = -2\text{.}\)
2.
Solve the equation \(7x = x + 24\) using a complete presentation.
3.
Consider the following presentation for solving the equation from the previous problem.
\begin{equation*}
\begin{aligned}
7x \amp = x + 24 \\
7x - x \amp = x + 24 - x \amp \eqnspacer \amp \text{Subtract $x$ from both sides} \\
7x - x \amp = x - x + 24 \amp \amp \text{Rearrange the terms} \\
7x - x \amp = (x - x) + 24 \amp \amp \text{Group the terms} \\
(7 - 1)x \amp = (1 - 1)x + 24 \amp \amp \text{Factor out the $x$} \\
6x \amp = 0x + 24 \amp \amp \text{Arithmetic} \\
6x \amp = 24 \amp \amp \text{Simplify} \\
\frac{6x}{6} \amp = \frac{24}{6} \amp \amp \text{Divide both sides by $6$} \\
x \amp = 4 \amp \amp \text{Arithmetic}
\end{aligned}
\end{equation*}
The work above is all technically correct. Why do you think this would be considered a problematic presentation?