Skip to main content Contents Index
Prev Up Next \(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\tikzspacer}{
\draw (-8,0) circle (0.02);
\draw (8,0) circle (0.02);
}
\newcommand{\eqnspacer}{\hspace{25pt}}
\usepackage{cancel}
\usepackage{multirow}
\usepackage{hhline}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Print
Worksheet Worksheet
Instructions: Solve the system of equations by elimination. If the system has either zero or infinitely many solutions, explain how you can determine this information from your calculations.
1.
\(\left\{
\begin{array}{rcrcr}
x \amp + \amp 2y \amp = \amp 7 \\
-2x \amp + \amp y \amp = \amp 1
\end{array}
\right.\)
2.
\(\left\{
\begin{array}{rcrcr}
x \amp - \amp 2y \amp = \amp 4 \\
-3x \amp + \amp 6y \amp = \amp -12
\end{array}
\right.\)
3.
\(\left\{
\begin{array}{rcrcr}
3x \amp - \amp 2y \amp = \amp -8 \\
-x \amp + \amp 3y \amp = \amp 5
\end{array}
\right.\)
4.
\(\left\{
\begin{array}{rcrcr}
-2x \amp + \amp 3y \amp = \amp -8 \\
-x \amp + \amp 2y \amp = \amp -5
\end{array}
\right.\)
5.
\(\left\{
\begin{array}{rcrcr}
2x \amp - \amp 3y \amp = \amp 1 \\
4x \amp - \amp 6y \amp = \amp 4
\end{array}
\right.\)
6.
\(\left\{
\begin{array}{rcrcr}
3x \amp + \amp 4y \amp = \amp 5 \\
2x \amp + \amp 2y \amp = \amp 3
\end{array}
\right.\)
7.
\(\left\{
\begin{array}{rcrcr}
2x \amp - \amp y \amp = \amp -4 \\
x \amp - \amp 2y \amp = \amp 5
\end{array}
\right.\)
8.
\(\left\{
\begin{array}{rcrcr}
-3x \amp - \amp 5y \amp = \amp -3 \\
x \amp + \amp y \amp = \amp 6
\end{array}
\right.\)
9.
\(\left\{
\begin{array}{rcrcr}
3x \amp + \amp 3y \amp = \amp 4 \\
-3x \amp - \amp 2y \amp = \amp -1
\end{array}
\right.\)
10.
\(\left\{
\begin{array}{rcrcr}
4x \amp + \amp 2y \amp = \amp -1 \\
3x \amp + \amp 2y \amp = \amp 2
\end{array}
\right.\)