Skip to main content Contents Index
Prev Up Next \(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\tikzspacer}{
\draw (-8,0) circle (0.02);
\draw (8,0) circle (0.02);
}
\newcommand{\eqnspacer}{\hspace{25pt}}
\usepackage{cancel}
\usepackage{multirow}
\usepackage{hhline}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Print
Worksheet Worksheet 5
1.
Factor \(x^2 - 4x - 4x + 16\) by grouping. Use a complete presentation, but do not draw the grids.
2.
Factor \(2x^2 + 5x - 4x - 10\) by grouping. Use a complete presentation, but do not draw the grids.
3.
Factor \(x^2 - 3x + 5x - 15\) by grouping. Then factor \(x^2 + 5x - 3x - 15\) by grouping. Use a complete presentation for both, but do not draw the grids. Was one easier than the other? Explain your perspective.
Both factorizations are the same! This is yet another example of there being multiple pathways to the same conclusion in mathematics.
Some students find one grouping easier than the other. You can decide for yourself whether this is true for you.