Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\tikzspacer}{
\draw (-8,0) circle (0.02);
\draw (8,0) circle (0.02);
}
\newcommand{\eqnspacer}{\hspace{25pt}}
\usepackage{cancel}
\usepackage{multirow}
\usepackage{hhline}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Worksheet 5
1.
Solve the equation \(7x - 15 = -2x + 7\) using a complete presentation.
2.
Solve the equation \(-5x - 3 = -3x + 3\) using a complete presentation.
3.
Work backwards from the given information to derive the original presentation.
\begin{equation*}
\begin{aligned}
\amp \amp \eqnspacer \amp \\
\\
\amp \amp \amp \text{Subtract $3x$ from both sides} \\
\\
2x + 1 \amp = 5x -4 \amp \amp \text{Add $9$ to both sides}
\end{aligned}
\end{equation*}
4.
Check the presentation for errors. If you find one, circle it and describe the mistake in words.
\begin{equation*}
\begin{aligned}
6x + 4 \amp = -3x - 10 \\
6x \amp = -3x - 14 \amp \eqnspacer \amp \text{Subtract $4$ from both sides} \\
9x \amp = -14 \amp \amp \text{Add $3x$ to both sides} \\
x \amp = \frac{14}{9} \amp \amp \text{Divide both sides by $9$}
\end{aligned}
\end{equation*}