Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\tikzspacer}{
\draw (-8,0) circle (0.02);
\draw (8,0) circle (0.02);
}
\newcommand{\eqnspacer}{\hspace{25pt}}
\usepackage{cancel}
\usepackage{multirow}
\usepackage{hhline}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Worksheet 4
1.
Solve the equation \(-3x + 12 = 5x - 8\) using a complete presentation.
2.
Solve the equation \(4x + 7 = -3x + 7\) using a complete presentation.
3.
Perform the indicated algebraic manipulations.
\begin{equation*}
\begin{aligned}
x^2 \amp = 6x + 7 \\
\\
\amp \amp \eqnspacer \amp \text{Subtract $6x$ from both sides} \\
\\
\amp \amp \amp \text{Add $9$ to both sides}
\end{aligned}
\end{equation*}
4.
Check the presentation for errors. If you find one, circle it and describe the mistake in words.
\begin{equation*}
\begin{aligned}
5x + 8 \amp = -2x - 8 \\
5x \amp = -2x \amp \eqnspacer \amp \text{Subtract $8$ from both sides} \\
7x \amp = 0 \amp \amp \text{Add $2x$ to both sides} \\
x \amp = 0 \amp \amp \text{Divide both sides by $7$}
\end{aligned}
\end{equation*}