
A Quick Study of Linear Regressions
Aaron Wong
May 2, 2020

This document gives a brief overview of the calculation of two variable linear regression. The derivation
will be worked out from first principles and basic ideas, and a step-by-step computational guide will also be
presented. (This document is functionally a test case for using R to create documents that are a mix of R
and LATEX.)

An Example Using R

We will begin by just running an example through R. This will generate information that the rest of the
document will explain the derivation and interpretation of this information. We will begin by creating the
data set.
# Data
X = c(3, 5, 8, 10, 17)
Y = c(1, 8, 3, 14, 10)

This data set consists of the following ordered pairs:
X Y
3 1
5 8
8 3
10 14
17 10

We can now have R determine the linear model that best fits this data.
# Create the linear model
regression = lm(Y ~ X)
summary(regression)

##
## Call:
## lm(formula = Y ~ X)
##
## Residuals:
## 1 2 3 4 5
## -2.980 2.870 -3.855 5.995 -2.031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2543 4.4672 0.505 0.649
## X 0.5751 0.4526 1.270 0.293
##
## Residual standard error: 4.9 on 3 degrees of freedom
## Multiple R-squared: 0.3498, Adjusted R-squared: 0.1331
## F-statistic: 1.614 on 1 and 3 DF, p-value: 0.2935

The challenge is that this information requires interpretation. What does all of this information mean? And
what other information might be helpful? We’re going to explore all of this information.
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Linear Model

The command regression = lm(Y ~ X) creates a linear model called regression. The goal of this model
is to come up with an equation of the form Y ′ = a + bX that is the “best fit” for the data stored in the
variables X and Y . (Note: Y ′ is not a derivative in this notation.) Let’s start by looking at a graph of the
data.
# Plot the data with the linear model
plot(X,Y,

xlim = c(0,20), ylim = c(0,20))
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We can see from this graph that there is a general lower-left to upper-right behavior of the data. As one
variable gets larger, the other variable tends to get larger as well. It is not possible to connect all the dots
with a single line, so if we tried to approximate this data with a line, there will always be some type of error.
But some lines do a better job than others. In the following graph, the blue and green lines do a better job
at matching the behavior as the red line. But between the blue and green line, it’s not so obvious which one
is better.
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Residuals

Before we can even begin to discuss the “best” fit, we need to devise a method for measuring how good a fit
actually is. We will do this by establishing an error value for each data point relative to the line. Suppose
we have an approximating function Y ′ = f(X). Then the residual for each point (Xi, Yi) is defined as the
(signed) distance between the point and its approximation (Xi, Y

′
i ). This graph shows the coordinates of all

the points (black), all of the approximations (blue), and all of the residuals (red).

Least Squares

For every line that we can draw (in fact, every function we can imagine), we will be able to compute these
residuals. Intuitively, we might imagine that the “total error” we might use would be the sum of the absolute
values of the residuals. And while this does give us a value that can be used (referred to as the absolute
deviation), we will actually use the sum of the squares of the residuals. There are several reasons for this
choice, but for our purposes we’re going to use the fact that the absolute value function is not differentiable.
The reason for this is that our goal will be to find the line that minimizes this error, giving us the least
squares method.

Deviation Scores

For reasons that will become more clear in the derivation of the least squares solution, it is helpful to define a
new set of variables. Let MX and MY be the means of the variables X and Y and let xi = Xi −MX and
yi = Yi −MY . These are called the deviation scores and represent a “re-centering” of the data so that Mx

and My (the means of x and y) are both zero.
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Least Squares Solution

We will now formalize the idea of the least squares method and apply it to the deviation scores. Suppose we
have a set of points (xi, yi) (for i = 1, 2, . . . , N) and let F be some set of functions. We define the function
SqE : F → R by SqE(f) =

∑N
i=1(yi − y′i)2, where f ∈ F and y′i = f(xi). Also, the only sum that will be

in summation notation will be over the index of points, and so we will be lazy and drop that part of the
notation. The goal is to identify the function f that minimizes the value of the function SqE.

Since we are doing a linear regression, we will let F be the set of all linear functions of the form f(x) = a+ bx.
Notice that if we treat a and b as real-valued continuous parameters, we have that

∂

∂a
SqE = ∂

∂a

(∑
(yi − y′i)2

)
=
∑

2(yi − y′i) ·
∂

∂a
(−y′i)

= −2
∑

(yi − y′i)
∂

∂a
(a+ bxi) = −2

∑
(yi − y′i)

and

∂

∂b
SqE = ∂

∂b

(∑
(yi − y′i)2

)
=
∑

2(yi − y′i) ·
∂

∂b
(−y′i)

= −2
∑

(yi − y′i)
∂

∂b
(a+ bxi) = −2

∑
(yi − y′i) · xi

By setting ∂
∂a SqE = 0, we get that

∑
y′i =

∑
y, which is equivalent to Na+ b

∑
xi =

∑
yi, or a+ bMx = My.

But we’ve chose the variables x and y so that their means are zero, and so this implies that a = 0.

Next, we will set ∂
∂b SqE = 0. We can see that this leads to

∑
xiy
′
i =

∑
xiyi, which can be written as

a
∑
xi + b

∑
x2

i =
∑
xiyi. Since a = 0, this implies that b =

∑
xiyi∑
x2

i

. It turns out to be convenient to write

this as b =
∑

xiyi√∑
x2

i

∑
y2

i

·
√∑

y2
i∑

x2
i

= r
sy

sx
, where sx and sy are the standard deivations of the variables x and

y and r is the Pearson correlation coefficient (discussed below). We have implicitly used the population
standard deviation here (s instead of σ), but the whole derivation can be done with an entire population
with no significant changes.

This shows us that the line of best fit for the deviation scores is given by y = r
sy

sx
x. We can substitute back

to the orginal variables (using the fact that a translation of variables does not affect the standard deviation)
to get Y −MY = r sY

sX
(X −MX), which can be rewritten as Y =

(
r · sY

sX

)
x+ (MY − rMX · sY

sX
).

The Pearson Correlation Coefficient

The Pearson correlation ceofficient is a measure of how well (or how poorly) the data is fit by a line. It is
defined by r =

∑
xiyi√∑

x2
i

∑
y2

i

. (Reminder: We are still using the deviation scores in this section.) Here are

some of the properties of the Pearson correlation coefficient:

• |r| ≤ 1

• The sign of r indicates whether the slope of the line of best fit is positive or negative.

• The magnitude of r indicates how well the line of best fit approximates the data. If |r| = 1 then the
points lie exactly on a line. If r = 0 then the data does not match a line at all (or all the data is on a
horizontal line, but that doesn’t happen in practice).
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A Computational Method

Although all of the calculations are laid out in the derivations give the formulas for calculating the least
squares fit of the data, it is helpful to have all of these calculations organized into a computational method
that is easy to follow. Here are the charts that perform that organizational role:

X Y x y x2 y2 xy
1 3 1
2 5 8
3 8 3
4 10 14
5 17 10
Σ
M

X Y Y ′ Y − Y ′ (Y − Y ′)2

1 3 1
2 5 8
3 8 3
4 10 14
5 17 10
Σ

Here are the steps for the first chart:

• The initial data is filled in (as shown).

• The Σ row is for the sum of the values in the column.

• The M row is for the mean of the column.

• The formulas for x and y are x = X −MX and y = Y −MY . If calculated correctly, the Σ and M
values for these columns should be 0.

• The remaining columns are calculated as described at the top of the columns. The Σ row is used to
calculate the Pearson correlation coefficient. The means of the x2 and y2 give the standard deviations
if the data represents a full population, otherwise you would need to divide by N − 1. Alternatively,
those spaces can simply be left blank and calculate the standard deviation somewhere else.

This is the completed version of the chart:

X Y x y x2 y2 xy
1 3 1 −5.600 −6.200 31.360 38.440 34.720
2 5 8 −3.600 0.800 12.960 0.640 −2.880
3 8 3 −0.600 −4.200 0.360 17.640 2.520
4 10 14 1.400 6.800 1.960 46.240 9.520
5 17 10 8.400 2.800 70.560 7.840 23.520
Σ 43 36 0.000 −0.000 117.200 110.800 67.400
M 8.6 7.2

From this chart, we can use the values at the bottom right to compute r:

r =
∑
xi, yi√∑
x2

i

∑
y2

i

= 67.4√
(117.2) · (110.8)

= 0.5914611

We can also calculate the sample variance and sample standard deviation for both X and Y :

s2
X =

∑
x2

i

N−1 = 117.2
5−1 = 29.3 s2

Y =
∑

y2
i

N−1 = 110.8
5−1 = 27.7

sX =
√
s2

X = 5.4129474 sY =
√
s2

Y = 5.2630789

From this, we can use the formulas we obtained earlier to calculate the coefficients of the line of best fit:
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r · sY

sX
= 0.5914611 · 5.2630789

5.4129474 = 0.5750853

MY − rMX ·
sY

SX
= 7.2− (0.5914611) · (8.6) · 5.2630789

5.4129474 = 2.2542662

So Y =
(
r · sY

sX

)
x+ (MY − rMX · sY

sX
) = 0.5750853X + 2.2542662. We can use this to proceed to the second

chart:

• The Y ′ column is simply the values obtained by plugging X into the formula. The sum of these values
should be the same as the sum of the values in the Y column. The reason for this comes out of hte
derivation of the least squares solution when we set the derivative to zero to find the minimum error.
This is a good self-check.

• The other two columns are calculations based on the formulas at the top of the chart. The sum at the
bottom of the first column should be zero, and this is another self-check moment. (This value should
be the difference of columns of the previous two values, which have the same sum.)

Here is the completed version of the second chart:

X Y Y ′ Y − Y ′ (Y − Y ′)2

1 3 1 3.980 −2.980 8.878
2 5 8 5.130 2.870 8.239
3 8 3 6.855 −3.855 14.861
4 10 14 8.005 5.995 35.939
5 17 10 12.031 −2.031 4.124
Σ 43 36 36.000 0.000 72.039

Comparisons with R’s Model

The output from the R summary of the linear model contains a lot of information. This section is just a
summary of how that information matches up with the values we’ve discussed.

• We calculated the Residuals in the Y − Y ′ column of the second chart.

• The Coefficients are the coefficients of the line of best fit, which we calculated in preparation to
complete the second chart.

• Multiple R-squared value is the square of the Pearson correlation coefficient: 0.59146112 = 0.3498263.

There are some other values in the summary table, and those values are related to attempting to determine
the statistical significance of the estimates. I may add to this document later to cover those parts.
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